
Decision Tree Classifier: Illustrative Example 

Decision tree builds classification or regression models in the form of a tree structure. It breaks down a 

dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally 

developed. The final result is a tree with decision nodes and leaf nodes. A decision node (e.g., Outlook) 

has two or more branches (e.g., Sunny, Overcast and Rainy). Leaf node (e.g., Play) represents a 

classification or decision. The topmost decision node in a tree which corresponds to the best predictor 

called root node. Decision trees can handle both categorical and numerical data.  
 

 

   

Algorithm 

The core algorithm for building decision trees called ID3 by J. R. Quinlan which employs a top-down, 

greedy search through the space of possible branches with no backtracking. ID3 

uses Entropy and Information Gain to construct a decision tree. 
 

Entropy 

A decision tree is built top-down from a root node and involves partitioning the data into subsets that 

contain instances with similar values (homogenous). ID3 algorithm uses entropy to calculate the 

homogeneity of a sample. If the sample is completely homogeneous, the entropy is zero and if the sample 

is an equally divided it has entropy of one. 

  



 

To build a decision tree, we need to calculate two types of entropy using frequency tables as follows: 
 

a) Entropy using the frequency table of one attribute: 

 

b) Entropy using the frequency table of two attributes: 

 



  

Information Gain 

The information gain is based on the decrease in entropy after a dataset is split on an attribute. 

Constructing a decision tree is all about finding attribute that returns the highest information gain (i.e., 

the most homogeneous branches). 
 

Step 1: Calculate entropy of the target.  

 

Step 2: The dataset is then split on the different attributes. The entropy for each branch is calculated. Then 

it is added proportionally, to get total entropy for the split. The resulting entropy is subtracted from the 

entropy before the split. The result is the Information Gain, or decrease in entropy.  

 

 

Step 3: Choose attribute with the largest information gain as the decision node, divide the dataset by its 

branches and repeat the same process on every branch. 



 

 

Step 4a: A branch with entropy of 0 is a leaf node. 

 

Step 4b: A branch with entropy more than 0 needs further splitting. 



 

  

 

Step 5: The ID3 algorithm is run recursively on the non-leaf branches, until all data is classified. 

  

  

Decision Tree to Decision Rules 

A decision tree can easily be transformed to a set of rules by mapping from the root node to the leaf nodes 

one by one. 

 

 



Example 

We will stick with our weekend example. Suppose we want to train a decision tree using the 

following instances: 

Weekend (Example) Weather Parents Money Decision (Category) 

W1 Sunny Yes Rich Cinema 

W2 Sunny No Rich Tennis 

W3 Windy Yes Rich Cinema 

W4 Rainy Yes Poor Cinema 

W5 Rainy No Rich Stay in 

W6 Rainy Yes Poor Cinema 

W7 Windy No Poor Cinema 

W8 Windy No Rich Shopping 

W9 Windy Yes Rich Cinema 

W10 Sunny No Rich Tennis 

The first thing we need to do is work out which attribute will be put into the node at the top 

of our tree: either weather, parents or money. To do this, we need to calculate: 

Entropy(S) = -pcinema log2(pcinema) -ptennis log2(ptennis) -pshopping log2(pshopping) -

pstay_in log2(pstay_in)  

                   = -(6/10) * log2(6/10) -(2/10) * log2(2/10) -(1/10) * log2(1/10) -(1/10) * 

log2(1/10)  

                   = -(6/10) * -0.737 -(2/10) * -2.322 -(1/10) * -3.322 -(1/10) * -3.322  

                   = 0.4422 + 0.4644 + 0.3322 + 0.3322 = 1.571 

and we need to determine the best of: 

Gain(S, weather) = 1.571 - (|Ssun|/10)*Entropy(Ssun) - (|Swind|/10)*Entropy(Swind) - 

(|Srain|/10)*Entropy(Srain) 

                          = 1.571 - (0.3)*Entropy(Ssun) - (0.4)*Entropy(Swind) - (0.3)*Entropy(Srain)  

                          = 1.571 - (0.3)*(0.918) - (0.4)*(0.81125) - (0.3)*(0.918) = 0.70 

Gain(S, parents) = 1.571 - (|Syes|/10)*Entropy(Syes) - (|Sno|/10)*Entropy(Sno)  

                          = 1.571 - (0.5) * 0 - (0.5) * 1.922 = 1.571 - 0.961 = 0.61 

Gain(S, money) = 1.571 - (|Srich|/10)*Entropy(Srich) - (|Spoor|/10)*Entropy(Spoor)  

                          = 1.571 - (0.7) * (1.842) - (0.3) * 0 = 1.571 - 1.2894 = 0.2816 



This means that the first node in the decision tree will be the weather attribute. As an 

exercise, convince yourself why this scored (slightly) higher than the parents attribute - 

remember what entropy means and look at the way information gain is calculated. 

From the weather node, we draw a branch for the values that weather can take: sunny, windy 

and rainy: 

 

Now we look at the first branch. Ssunny = {W1, W2, W10}. This is not empty, so we do not 

put a default categorisation leaf node here. The categorisations of W1, W2 and W10 are 

Cinema, Tennis and Tennis respectively. As these are not all the same, we cannot put a 

categorisation leaf node here. Hence we put an attribute node here, which we will leave 

blank for the time being. 

Looking at the second branch, Swindy = {W3, W7, W8, W9}. Again, this is not empty, and 

they do not all belong to the same class, so we put an attribute node here, left blank for now. 

The same situation happens with the third branch, hence our amended tree looks like this: 

 

Now we have to fill in the choice of attribute A, which we know cannot be weather, because 

we've already removed that from the list of attributes to use. So, we need to calculate the 

values for Gain(Ssunny, parents) and Gain(Ssunny, money). Firstly, Entropy(Ssunny) = 0.918. 

Next, we set S to be Ssunny = {W1,W2,W10} (and, for this part of the branch, we will ignore 

all the other examples). In effect, we are interested only in this part of the table: 

Weekend (Example) Weather Parents Money Decision (Category) 

W1 Sunny Yes Rich Cinema 

W2 Sunny No Rich Tennis 

W10 Sunny No Rich Tennis 



Hence we can calculate: 

Gain(Ssunny, parents) = 0.918 - (|Syes|/|S|)*Entropy(Syes) - (|Sno|/|S|)*Entropy(Sno)  

                          = 0.918 - (1/3)*0 - (2/3)*0 = 0.918 

Gain(Ssunny, money) = 0.918 - (|Srich|/|S|)*Entropy(Srich) - (|Spoor|/|S|)*Entropy(Spoor) 

                          = 0.918 - (3/3)*0.918 - (0/3)*0 = 0.918 - 0.918 = 0 

Notice that Entropy(Syes) and Entropy(Sno) were both zero, because Syes contains examples 

which are all in the same category (cinema), and Sno similarly contains examples which are 

all in the same category (tennis). This should make it more obvious why we use information 

gain to choose attributes to put in nodes. 

Given our calculations, attribute A should be taken as parents. The two values from parents 

are yes and no, and we will draw a branch from the node for each of these. Remembering 

that we replaced the set S by the set SSunny, looking at Syes, we see that the only example of 

this is W1. Hence, the branch for yes stops at a categorisation leaf, with the category being 

Cinema. Also, Sno contains W2 and W10, but these are in the same category (Tennis). Hence 

the branch for no ends here at a categorisation leaf. Hence our upgraded tree looks like this: 

 

Finishing this tree off is left as a tutorial exercise. 

11.4 Avoiding Overfitting 

As we discussed in the previous lecture, overfitting is a common problem in machine 

learning. Decision trees suffer from this, because they are trained to stop when they have 

perfectly classified all the training data, i.e., each branch is extended just far enough to 

correctly categorise the examples relevant to that branch. Many approaches to overcoming 

overfitting in decision trees have been attempted. As summarised by Tom Mitchell, these 

attempts fit into two types: 



 Stop growing the tree before it reaches perfection. 

 Allow the tree to fully grow, and then post-prune some of the branches from it. 

The second approach has been found to be more successful in practice. Both approaches boil 

down to the question of determining the correct tree size. See Chapter 3 of Tom Mitchell's 

book for a more detailed description of overfitting avoidance in decision tree learning. 

 


